
TD: Langages

Olivier Raynaud (raynaud@isima.fr)

 $FIGURE\ 1-Noam\ Chomsky\ talks\ about\ how\ kids\ acquire\ language\ in\ an\ video\ by\ Michel\ Gondry.\ https://www.nscdscamps.org/blog/category/education/1622060/noam-chomsky-talks-about-how-kids-acquire-language-and-ideas-in-animated-video-by-michel-gondry$

Question 1. Soit le langage $L = \{ab, ba\}$ sur l'alphabet $\Sigma = \{a, b\}$. Répondre aux questions suivantes :

- décrire L* en compréhension, en intention et inductivement;
- décrire L^+ en compréhension, en intention et inductivement;
- dire si les mots $\omega_1 = aabbba$ et $\omega_2 = ababba$ appartiennent à L^* ;
- donner un mot de L^* admettant aab comme facteur;
- soit $L_1 = \{aa, b\}$, décrire L_1^* en compréhension, en intention et inductivement.

Question 2. Donner une définition inductive des langages suivants :

- les entiers naturels;
- les nombres puissance de 2;
- l'ensemble des parties d'un ensemble E fini.

Question 3. Etant donnés deux languages S et T tel que $S \neq T$, peut-on avoir :

- $-S^* = T^*$?
- $-S = T^*$?
- $-S^{+}=T^{+}$?

Question 4. Soit $L = \{aa, aba, baa\}$. Dire si $\omega = baaaaabaaa$ est dans L^* . La décomposition de ω en éléments de L est-elle unique? Cette unicité ou non unicité est-elle vérifiée pour tout langage L sur $\Sigma = \{a, b\}$?

Définition 1 (Langage préfixe).

On dit qu'un langage L est préfixe si aucun mot de L n'est préfixe propre d'un autre mot de L.

Question 5. Soit l'alphabet $\Sigma = \{a, b\}$. Dire si les langages suivants sont préfixes :

- $-L_1 = a^n b^n \ avec \ n > 1;$
- $L_2 = L^*$ avec L un langage préfixe quelconque;
- $L_3 = L \cup L'$ avec L et L' des langages préfixes;
- $-L_4 = \{ \omega \in \Sigma^* \mid |\omega|_a = |\omega|_b \}.$

Question 6. Soit l'alphabet $\Sigma = \{a, b\}$, soit $L = \{\omega \in \Sigma \mid |\omega|_a = |\omega|_b\}$ et soit L' défini inductivement de la façon suivante :

- $Base:\epsilon$;
- $R\`egle: si\ u\ et\ v\ sont\ dans\ L'\ alors\ aubv\ et\ buav\ sont\ dans\ L'.$

Montrer que L = L'.

Question 7. Considérons le langage Palindromes qui est l'ensemble des mots sur $\Sigma = \{a, b\}$ qui sont des palindromes (mots qui se lisent de la même façon de gauche à droite que de droite à gauche).

- décrire le langage Palindromes en intention et inductivement;
- montrer que si x est dans Palindromes alors x^n est aussi dans Palindrome.

Question 8. Considérons le langage BP des mots bien parenthèsés sur $\Sigma = \{(,)\}$. Décrire BP par intention et inductivement.

Question 9. Considérons le langage NSEO des mots sur $\Sigma = \{n, s, e, o\}$ qui représente les déplacements possibles à partir d'une origine d'un curseur sur un plan quadrillé (n représente un déplacement d'une unité vers le nord, s vers le sud, e vers l'est et o vers l'ouest) tel que le curseur doit revenir au point d'origine. Décrire le langage NSEO en intention et inductivement; On restreint maintenant NSEO au langage NE, qui correspond à des déplacements dans le quadrant NE. Décrire NE par intention et inductivement.

Question 10. Comment reconnaitre les langages BP, NSEO et Palindromes avec un compteur ou avec une pile.